solution:
ΔU = q + W = 1.2 lbm* [(990.58 Btu/lbm) - (1363.3 Btu/lbm)] =-447.26400 Btu
W = ΔU - q= -447.26400 Btu - (-342.9 Btu)= -104.36500 Btu =-104 Btu
W = -integral[P*dV] P*V2 = constant (polytropic)
Steam table gives you that at T = 1000.5 F, u(1) = 1363.3Btu/lbm
T = 811.205556 K
P = 500 psi = 3447378.65 Pa
Vi/n = RT/Pi = (8.314 J/mol/K *811.206 K)/(3 447 378.65 Pa) =0.00195637537 m3/mol
Vi/(n*molar mass) = 0.00195637537 m3/mol*(100cm/1m)3 *(1 in/2.54 cm)3*(1 ft/12 in)3 *(1mol/18g)*(454 g/lbm)
Vi/mass = 1.74257166 ft3/lbm
Vi = 1.2 lbm*(1.74257166 ft3/lbm)= 2.09108599ft3
P*V2 = constant (polytropic)
constant = (500 psi)*(2.09108599 ft3)2 =2186.32031 psi*ft6
W = -integral [P*dV] = -integral [constant*dV/V2] =constant*[1/Vf - 1/Vi] = -104 Btu (from part a)
1/Vf = -104 Btu/constant + 1/Vi
1/Vf = -104 Btu/ (2186.32031 psi*ft6) + 1/[2.09108599ft3]