Find the length of an arc of a circle subtended by an angle of 108 with a radius of 48 inches. also find the area of the secotr of the circle cut by the same angle

Respuesta :

arclength (s) = θ · radius(r)     ; where "θ" is in radians

[tex]\frac{\pi}{180}[/tex] =    [tex]\frac{θ}{108}[/tex]

108 π = 180(θ)

[tex]\frac{108}{180}[/tex]π = θ

[tex]\frac{3}{5}[/tex]π = θ


s = θ · r

  = [tex]\frac{3}{5}[/tex]π · 48

  = [tex]\frac{144}{5}[/tex]π

Answer: [tex]\frac{144}{5}[/tex]π inches

Area of circle = π · r²

Area of sector = [tex]\frac{108}{360}[/tex] · π · (48)²      

                        =  [tex]\frac{3}{10}[/tex] · π · 2304

                        = [tex]\frac{6912}{10}[/tex] · π

Answer: 691.2π in²