[tex] \frac{3}{4} \div 2 \frac{5}{8} = [/tex]

[tex] \frac{7}{8} \div 3 \frac{1}{2} = [/tex]

[tex]14 \div 3 \frac{5}{7} = [/tex]

[tex] \frac{4}{9} \div 3 \frac{1}{3} = [/tex]

[tex] \frac{5}{6} \div 11 \frac{2}{3} = [/tex]

[tex] \frac{2}{3} \div 1 \frac{1}{9} = [/tex]

[tex] \frac{4}{15} \div 6 \frac{2}{5} = [/tex

[tex] \frac{9}{16} \div 3 \frac{3}{8} = [/tex]

[tex] \frac{5}{9} \div 1\frac{1}{3} = [/tex]

[tex] 28 \div 1 \frac{1}{6} = [/tex]

[tex] \frac{4}{5} \div 2 \frac{3}{10} = [/tex]

[tex]9 \div 8 \frac{1}{10} = [/tex]

Respuesta :

"keep-change-flip" is a strategy used to dividing fractions.

always change the mix fraction to a improper fraction and you slove.

I'll do the first one and the rest is basically done the same way.

[tex] \frac{3}{4} \div 2 \frac{5}{8} = \frac{3}{4} \times \frac{21}{4} = \frac{3}{4} \times \frac{4}{21} = \frac{1}{7} [/tex]
for the last fraction equation I cross multiply the 4 divided into 4 gives you 1 and the 3 divided into 21 gives you 7.