suppose a triangle has 2 sides of length 3 and 4 and that the angle between these two sides is 60 degrees. what is the length of the third side of the triangle?

a. 3
b. sr13
c sr3
d 4sr3

Respuesta :

Answer:

[tex]\boxed{b.\:\:\:\sqrt{13}}[/tex]

Step-by-step explanation:

Let the third side of the triangle be [tex]h\: units[/tex].


We can apply the cosine rule to find [tex]h[/tex].


[tex]h^2=3^2+4^2-2(3)(4)\cos(60\degree)[/tex]

We evaluate to obtain;

[tex]\Rightarrow h^2=9+16-24(\frac{1}{2})[/tex]


[tex]\Rightarrow h^2=25-12[/tex]


[tex]\Rightarrow h^2=13[/tex]

We take the positive square root of both sides to obtain;

[tex]\Rightarrow h=\sqrt{13}[/tex]


The correct answer is B.

Ver imagen kudzordzifrancis