Respuesta :

Answer:

[tex]a=0[/tex]

Step-by-step explanation:

The given expression is;

[tex](\frac{1}{7})^{3a+3} =343^{a-1}[/tex]

This implies that;

[tex]7^{-1(3a+3)} =7^{3(a-1)}[/tex]

Equate the exponents;

[tex]-1(3a+3) =3(a-1)[/tex]

Expand;

[tex]-3a-3 =3a-3[/tex]

[tex]-3a-3a =-3+3[/tex]

[tex]-6a=0[/tex]

[tex]a=0[/tex]

Answer:

The right choice is (2) 0

Step-by-step explanation:

7 ^(3a-3) = 7^(3a-3)

= -3a -3 = 3a -3

= -3a = 3a

-3a -3a = 0

-6a = 0

a= 0