A rocket is divided into three sections: the payload and navigation section in the top, the fuel section in the middle, and the rocket engine section in the bottom. The top section is one-sixth the length of the bottom section. The middle section is one-half the length of the bottom section. The total length is 240ft. Find the length of each section.

Respuesta :

Answer:

Let's name each of the three sections of the rocket as:

-[tex]P[/tex] payload and navigation

-[tex]F[/tex] fuel

-[tex]E[/tex] engine

Now, we are told that:

The top section is one-sixth the length of the bottom section:

[tex]P=\frac{1}{6}E[/tex]    (1)

The middle section is one-half the length of the bottom section:

[tex]F=\frac{1}{2}E[/tex]   (2)

The total length is 240ft:

[tex]P+F+E=240ft[/tex]    (3)

We may begin by substiting (1) and (2) in equation (3), in order to find the value of the engine section [tex]E[/tex]:

[tex]\frac{1}{6}E+\frac{1}{2}E+E=240ft[/tex]    

[tex]E=144ft[/tex]    (4)>>>> Value of the engine section length

Then, we substitute this value of [tex]E[/tex] in equations (1) and (2):

[tex]P=\frac{1}{6}144ft[/tex]  

[tex]P=24ft[/tex]   (5)>>>> Value of the payload and navigation section length

[tex]F=\frac{1}{2}144ft[/tex]  

[tex]F=72ft[/tex]    (6)>>>> Value of the fuel section length