Which conic section is defined by the equation shown below?

[tex]x^2+y^2-10x-2y+10=0[/tex]

A. Circle
B. Parabola
C. Hyperbola
D. Ellipse

Respuesta :

Answer:

circle

Step-by-step explanation:

Given in the question an equation,

x² + y² - 10x - 2y + 10 = 0

The center-radius form of the circle equation is in the format

(x – h)² + (y – k)² = r²

Forming the standard equation into circle equation

x² + y² - 10x - 2y = -10

x²  - 10x + y² - 2y = -10

(x² - 10x) + (y² - 2y) = -10

(x² - 10x + 25) + (y² - 2y + 4) = -10+25+4

(x-(-5))² + (y-(-2))² = √19²

(x+5)² + (y+2)² = √19²

Answer:

Circle

Step-by-step explanation:

Ver imagen spookyannabellee