The volume of a cone is 3x cubic units and its height is x units.
Which expression represents the radius of the cone's base, in units?
3x
6x
37182
9xx

Respuesta :

Step-by-step explanation:

Volume of a cone is [tex]\pi r^{2} .height[/tex]/3 so [tex](3x)^{3}[/tex] is equal to

[tex]\pi r^{2} .x[/tex]/3 .  Also  [tex](3x)^{3}[/tex] = [tex]27x^{3}[/tex]

[tex]27x^{3}[/tex] = [tex]\pi r^{2} .x[/tex]/3. Pi equals to 3 so pi and the 3 in the denominator will simplfy each other. lets simplfy the "x" so [tex]r^{2}  = 27x^{2}[/tex] so the radius is 9x.