Respuesta :

Answer:

[tex]i^{15} = -i[/tex]

Step-by-step explanation:

The basic relation of the complex numbers is:

[tex]i^{2} = -1[/tex]

So, we decompose [tex]i^{15}[/tex] in factors of [tex]i^{2}[/tex].

So:

[tex]i^{15} = i^{2}*i^{2}*i^{2}*i^{2}*i^{2}*i^{2}*i^{2}*i[/tex]

Each [tex]i^{2}[/tex] is replaced by -1.

So:

[tex]i^{15} = (-1)*(-1)*(-1)*(-1)*(-1)*(-1)*(-1)*i[/tex]

[tex]i^{15} = (-1)^{7}*i[/tex]

Any negative value powered to an odd value will be negative. So:

[tex](-1)^{7} = -1[/tex]

[tex]i^{15} = -i[/tex]