Respuesta :

Answer:

sinΘ = [tex]\frac{15}{17}[/tex]

Step-by-step explanation:

Using the trigonometric identity

sin²x + cos²x = 1 ⇒ sin²x = 1 - cos²x

Given

cosΘ = [tex]\frac{8}{17}[/tex], then

sinΘ = ± [tex]\sqrt{1-(8/17)^2}[/tex] = ± [tex]\sqrt{1-\frac{64}{289} }[/tex] = ± [tex]\sqrt{\frac{225}{289} }[/tex] = ± [tex]\frac{15}{17}[/tex]

Since Θ is in first quadrant then sinΘ > 0, thus

sinΘ = [tex]\frac{15}{17}[/tex]