Respuesta :

Answer: a=-8 and b=-2

Step-by-step explanation:

What is simple form of [tex]\sqrt[3]{x^{10} }[/tex]

=  [tex]\sqrt[3]{(x^{9})(x) }[/tex]

Now, When x = -2

Comparing [tex] a\sqrt[3]{b}[/tex] with [tex] x^{3}\sqrt[3]{x} [/tex]

We get,

[tex] a = x^{3} [/tex]

[tex] a = -8[/tex]

Now, [tex] b = x = -2 [/tex]