Answer:
29.07684 N
-2.5506 m/s²
Explanation:
m = Mass of box = 11.4 kg
g = Acceleration due to gravity = 9.81 m/s²
[tex]\mu[/tex] = Coefficient of kinetic friction = 0.26
N = Normal force = [tex]mg[/tex]
Frictional force is given by
[tex]f=\mu N\\\Rightarrow f=0.26\times 11.4\times 9.81\\\Rightarrow f=29.07684\ N[/tex]
The horizontal force required to push the box is 29.07684 N
Acceleration is given by
[tex]a=-\frac{f}{m}\\\Rightarrow a=-\frac{\mu mg}{m}\\\Rightarrow a=-\mu g\\\Rightarrow a=-0.26\times 9.81\\\Rightarrow a=-2.5506\ m/s^2[/tex]
The acceleration of the box is -2.5506 m/s²