Given these reactions, where X represents a generic metal or metalloid 1 ) H 2 ( g ) + 1 2 O 2 ( g ) ⟶ H 2 O ( g ) Δ H 1 = − 241.8 kJ 2 ) X ( s ) + 2 Cl 2 ( g ) ⟶ XCl 4 ( s ) Δ H 2 = + 461.9 kJ 3 ) 1 2 H 2 ( g ) + 1 2 Cl 2 ( g ) ⟶ HCl ( g ) Δ H 3 = − 92.3 kJ 4 ) X ( s ) + O 2 ( g ) ⟶ XO 2 ( s ) Δ H 4 = − 789.1 kJ 5 ) H 2 O ( g ) ⟶ H 2 O ( l ) Δ H 5 = − 44.0 kJ what is the enthalpy, Δ H , for this reaction? XCl 4 ( s ) + 2 H 2 O ( l ) ⟶ XO 2 ( s ) + 4 HCl ( g )

Respuesta :

Answer : The enthalpy of the given reaction will be, -1048.6 kJ

Explanation :

According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.

The main reaction is:

[tex]XCl_4(s)+2H_2O(l)\rightarrow XO_2(s)+4HCl(g)[/tex]    [tex]\Delta H=?[/tex]

The intermediate balanced chemical reactions are:

(1) [tex]H_2(g)+\frac{1}{2}O_2(g)\rightarrow H_2O(g)[/tex]     [tex]\Delta H_1=-241.8kJ[/tex]

(2) [tex]X(s)+2Cl_2(g)\rightarrow XCl_4(s)[/tex]    [tex]\Delta H_2=+461.9kJ[/tex]

(3) [tex]\frac{1}{2}H_2(g)+\frac{1}{2}Cl_2(g)\rightarrow HCl(g)[/tex]    [tex]\Delta H_3=-92.3kJ[/tex]

(4) [tex]X(s)+O_2(g)\rightarrow XO_2(s)[/tex]    [tex]\Delta H_4=-789.1kJ[/tex]

(5) [tex]H_2O(g)\rightarrow H_2O(l)[/tex]    [tex]\Delta H_5=-44.0kJ[/tex]

Now reversing reaction 2, multiplying reaction 3 by 4, reversing reaction 1 and multiplying by 2, reversing reaction 5 and multiplying by 2 and then adding all the equations, we get :

(1) [tex]2H_2O(g)\rightarrow 2H_2(g)+O_2(g)[/tex]     [tex]\Delta H_1=2\times 241.8kJ=483.6kJ[/tex]

(2) [tex]XCl_4(s)\rightarrow X(s)+2Cl_2(g)[/tex]    [tex]\Delta H_2=-461.9kJ[/tex]

(3) [tex]2H_2(g)+2Cl_2(g)\rightarrow 4HCl(g)[/tex]    [tex]\Delta H_3=4\times -92.3kJ=-369.2kJ[/tex]

(4) [tex]X(s)+O_2(g)\rightarrow XO_2(s)[/tex]    [tex]\Delta H_4=-789.1kJ[/tex]

(5) [tex]2H_2O(l)\rightarrow 2H_2O(g)[/tex]    [tex]\Delta H_5=2\times 44.0kJ=88.0kJ[/tex]

The expression for enthalpy of main reaction will be:

[tex]\Delta H=\Delta H_1+\Delta H_2+\Delta H_3+\Delta H_4+\Delta H_5[/tex]

[tex]\Delta H=(483.6)+(-461.9)+(-369.2)+(-789.1)+(88.0)[/tex]

[tex]\Delta H=-1048.6kJ[/tex]

Therefore, the enthalpy of the given reaction will be, -1048.6 kJ