Respuesta :

Answer:

[tex]A=80\ ft^2[/tex]

Step-by-step explanation:

we know that

The area of the figure is equal to the area of an isosceles triangle (has two equal sides) plus the area of a rectangle

step 1

Find the area of the triangle

The area of the triangle is equal to

[tex]A=\frac{1}{2}bh[/tex]

we have

[tex]b=16\ ft[/tex]

To find out the height of the triangle Apply the Pythagorean Theorem

[tex]10^2=(16/2)^2+h^2[/tex]

solve for h

[tex]100=64+h^2[/tex]

[tex]h^2=100-64[/tex]

[tex]h^2=36[/tex]

[tex]h=6\ ft[/tex]

Find the area of triangle

[tex]A=\frac{1}{2}(16)(6)[/tex]

[tex]A=48\ ft^2[/tex]

step 2

Find the area of rectangle

The area of rectangle is equal to

[tex]A=LW[/tex]

we have

[tex]L=16\ ft\\W=2\ ft[/tex]

substitute

[tex]A=(16)(2)=32\ ft^2[/tex]

step 3

Find the area of the figure

Adds the areas

[tex]A=48+32=80\ ft^2[/tex]