Respuesta :

The solution is [tex](x=\frac{-7}{2},\ y=\frac{-13}{2} )[/tex].

Solution:

Given system of equations are

[tex]-3 x+y=4[/tex] ---------- (1)

[tex]-9 x+5 y=-1[/tex] ---------- (2)

To solve the given system of equations by substitution method.

Let us take the equation (1) and find the value of y.

(1) ⇒ [tex]-3 x+y=4[/tex]

Add 3x on both sides of the equation, we get

⇒ [tex]y=4+3x[/tex]

Substitute y = 4 + 3x in equation (2), we get

[tex]-9 x+5 (4+3x)=-1[/tex]

[tex]-9 x+20+15x=-1[/tex]

Combine like terms together.

[tex]-9 x+15x=-1-20[/tex]

[tex]6x=-21[/tex]

Divide by 6 on both sides of the equation.

[tex]$x=-\frac{21}{6}[/tex]

Divide the numerator and denominator by the common factor 3.

[tex]$x=-\frac{21\div3}{6\div3}[/tex]

[tex]$x=-\frac{7}{2}[/tex]

Now, substitute x value in y = 4 + 3x, we get

[tex]$y=4+3\left(\frac{-7}{2} \right)[/tex]

[tex]$y=4+\left(\frac{-21}{2} \right)[/tex]

Take LCM of the denominators and make the same.

[tex]$y=\frac{8}{2} +\frac{-21}{2}[/tex]

[tex]$y=\frac{-13}{2}[/tex]

Hence the solution is [tex](x=\frac{-7}{2},\ y=\frac{-13}{2} )[/tex].