Respuesta :

Answer:

The Figure for Right triangle is below,

Therefore , 15 unit length represents BC.

Step-by-step explanation:

Given:

Consider a right triangle ABC, Such that

[tex]\cos A=\dfrac{15}{17}\\\\\tan A=\dfrac{8}{15}[/tex]

To Find:

BC = ?

Solution:

In Right Angle Triangle ABC, Cosine and Tangent identity

[tex]\cos A = \dfrac{\textrm{side adjacent to angle C}}{Hypotenuse}\\[/tex]

[tex]\tan A= \dfrac{\textrm{side opposite to angle A}}{\textrm{side adjacent to angle A}}[/tex]

BUT,

[tex]\cos A=\dfrac{15}{17}\\\\\tan A=\dfrac{8}{15}[/tex] ....Given

On Comparing,

Adjacent side to angle A = AB = 15

Opposite side to angle A = BC = 8

Hypotenuse = AC =17

Also Pythagoras theorem is Satisfies,

[tex](\textrm{Hypotenuse})^{2} = (\textrm{Shorter leg})^{2}+(\textrm{Longer leg})^{2}[/tex]

[tex](\textrm{Hypotenuse})^{2} = 17^{2}=289[/tex]

[tex](\textrm{Shorter leg})^{2}+(\textrm{Longer leg})^{2}=15^{2}+8^{2}=289[/tex]

The Figure for Right triangle is below,

Therefore , 15 unit length represents BC.

Ver imagen inchu420