Answer:
Therefore,
2178 number of turns are there in Solenoid.
Explanation:
Given:
Current, I = 7.79 A
Length of Solenoid,
[tex]L =10.6\ cm=\dfrac{10.6}{100}=0.106\ meter[/tex]
magnetic field at the center of the solenoid,
B = 0.201 Tesla
To Find:
N = ? turns
Solution:
Magnetic field at the center of the solenoid is given as,
[tex]B=\dfrac{\mu_{0}\times N\times I}{L}[/tex]
Where,
B = Magnetic Field,
N = Number of turns,
I = Current,
L = Length of Solenoid
[tex]\mu_{0}=permeability\ of\ free\ space=4\pi\times 10^{-7}\ H/m[/tex]
Substituting the values we get
[tex]N=\dfrac{B\times L}{\mu_{0}\times I}[/tex]
[tex]N=\dgrac{0.201\times 0.106}{4\pi\times 10^{-7}\times 7.79}=2177.58[/tex]
[tex]N\approx 2178\ turns[/tex]
Therefore,
2178 number of turns are there in Solenoid.