The A-36 solid steel shaft is 2 m long and has a diameter of 60 mm. It is required to transmit 60 kW of power from the motor M to the pump P. Determine the smallest angular velocity the shaft if the allowable shear stress is ?

Respuesta :

The smallest angular velocity is 17.7rad/s

Explanation:

We know,

[tex]T = \frac{Tr}{J}[/tex]

For solid shaft, [tex]J = \frac{\pi }{2} r^4[/tex]

For hollow shaft, [tex]J = \frac{\pi }{2} (r_o^4 - r_i^4)[/tex]

Therefore,

[tex]T_m_a_x = \frac{Tr}{J} \\\\[/tex]

[tex]80 X 10^6 = \frac{T (0.03)}{\frac{\pi }{2}(0.03)^4 } \\\\T = 3392.92 Nm\\[/tex]

We know,

P = Tω

[tex]w = \frac{P}{T} \\\\w = \frac{60 X 10^3}{3392.92} \\\\w = 17.7rad/s[/tex]

Thus, the smallest angular velocity is 17.7rad/s