A man pushes a crate massing 50 kg at a constant speed up a ramp inclined at an angle of 30 to the horizontal. the coefficient of kinetic friction between the crate and the ramp is 0.40. what force must the man exert on the crate

Respuesta :

Answer:

[tex]P = 415.037\,N[/tex]

Explanation:

Let assume that direction of pull force is parallel to the ramp. The equations of equilibrium for the crate are: (x' is the axis parallel to the ramp, y' is axis perpendicular to the ramp)

[tex]\Sigma F_{x'} = P - m\cdot g \cdot \sin \theta - \mu_{k}\cdot N = 0\\\Sigma F_{y'} = N - m\cdot g \cdot \cos \theta = 0[/tex]

The force exerted by the man on the crate can be calculated after manipulating the equation of equilibrium algebraically:

[tex]P = m \cdot g \cdot \sin \theta + \mu_{k}\cdot m \cdot g \cdot \cos \theta[/tex]

[tex]P = m\cdot g \cdot (\sin \theta + \mu_{k}\cdot \cos \theta)[/tex]

[tex]P = (50\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot (\sin 30^{\textdegree} + 0.40 \cdot \cos 30^{\textdegree})[/tex]

[tex]P = 415.037\,N[/tex]