Respuesta :

Answer : The entropy change of the toluene is 18.5 J/K

Explanation :

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Given mass of toluene = 46 g

Molar mass of toluene = 92.14 g/mol

Putting values in above equation, we get:

[tex]\text{Moles of ethyl toluene}=\frac{46g}{92.14g/mol}=0.499mol[/tex]

To calculate the entropy change for different phase at same temperature, we use the equation:

[tex]\Delta S=n\times \frac{\Delta H_{fusion}}{T}[/tex]

where,  

[tex]\Delta S[/tex] = Entropy change  = ?

n = moles of toluene = 0.499 moles

[tex]\Delta H_{fusion}[/tex] = enthalpy of fusion = 6.6 kJ/mol = 6600 J/mol   (Conversion factor:  1 kJ = 1000 J)

T = temperature of the system = [tex]-95.0^oC=[-95.0+273]K=178K[/tex]

Putting values in above equation, we get:

[tex]\Delta S=\frac{0.499mol\times 6600J/mol}{178K}\\\\\Delta S=18.5J/K[/tex]

Hence, the entropy change of the toluene is 18.5 J/K