Water evaporating from a pond does so as if it were diffusing across an air film 0.15 cm thick. The diffusion coefficient of water in 20 C air is about 0.25 cm2/sec. If the air out of the film is fifty percent saturated, how fast will the water level drop in a day

Respuesta :

Answer:

1.25 cm/day

Explanation:

An air thickness , (l) = 0.15 cm

Air Temperature =

[tex](T_a)=20^0C = (20+273)K\\(T_a)=293K[/tex]

Mass Diffusion coefficient (D) = [tex]0.25cm^2/sec[/tex]

If the air pressure [tex](P_a) = 0.5 P_{sat}[/tex]

We are to determine how fast will the water [tex](H_2O)[/tex] level drop in a day.

From the property of air  at T = 20° C

[tex]P_{sat} = 2.34[/tex] from saturated water properties.

The mass flow of [tex](H_2O)[/tex]  can be calculated as:

[tex]H_2O = \frac{D}{\phi} \delta C[/tex]

where:

[tex]\delta C = \frac{P_{sat}*P_a}{RT }[/tex]

R(constant) = 8.314 kJ/mol.K

[tex]\delta C = \frac{2.34*0.5}{8.314*293 }[/tex]

[tex]\delta C = 4.803*10^{-4}\\ \delta C =0.48*10^{-3} mol/m^3\\ \delta C = 0.48*10^{-6} mol/cm^3[/tex]

Since 1 mole = 18 cm ³ of water

[tex]0.48*10^{-6}mol/cm^3[/tex] will be: [tex](0.48*10^{-6}mol/cm^3 *18)cm^3/cm^3[/tex]

[tex]\delta C = 8.64 * 10^{-6}[/tex]

Again:

[tex]H_2O = \frac{D}{\phi} \delta C[/tex]

[tex]= \frac{0.25}{0.15}*8.69*10^{-6} \frac{cm^2/sec}{cm}[/tex]

[tex]=1.4481*10^{-5} \frac{cm^2/sec}{cm}[/tex]

Converting the above value to cm/day: we have:

[tex]1.448*10^{-5}*3600*24\frac{cm}{s}*\frac{s}{yr}*\frac{yr}{day}[/tex]

= 1.25 cm/day

∴ the rate at which  the water level drop in a day = 1.25 cm/day