This problem refers to right triangle ABC with C = 90°. Begin the problem by drawing a picture of the triangle with both the given and asked for information labeled appropriately. If A = 39° and c = 86 cm, find b. (Round your answer to the nearest whole number.)

Respuesta :

Answer:

The answer is b = 55

Step-by-step explanation:

First off if you add every corner's degrees for the triangle together it should be equal to 180 degrees.

You would first do 39 + 86 = 125 and then subtract 125 from 180. 180 - 125 = 55.

There you have your answer!

Using a trigonometric relation for right triangles, we will see that b = 67cm.

How to find the value of b?

In this case, b is the other cathetus of the right triangle, c is the hypotenuse.

We know that A = 39°, then the cathetus a is the opposite cathetus of that angle, and b is the adjacent cathetus.

So we can use the relation:

cos(angle) = (adjacent cathetus)/(hypotenuse)

Replacing what we know, we get:

cos(A) = b/c

cos(39°) = b/86cm

Solving it for b we get:

cos(39°)*86cm = b = 66.8cm

Rounding to the next whole number, we get:

b = 67cm

If you want to learn more about right triangles:

https://brainly.com/question/2217700

#SPJ2