The acceleration, in feet per second per second, of an object is given by the acceleration function a(t)=2 sin t+1. The initial velocity is v(0)=0 and the initial position is s(0) =3. Find the equation of velocity function. Find the position function and the average value of the position function from time t = 2 seconds to t = 5 seconds. Show all your work.

The acceleration in feet per second per second of an object is given by the acceleration function at2 sin t1 The initial velocity is v00 and the initial positio class=

Respuesta :

Answer:

velocity v(t) = -2cos(t)+t+2

position s(t) = [tex]-2sin(t)+\frac{t^2}{2} +2t + 3[/tex]

average of position from 2 to 5 = 17.666

Step-by-step explanation:

velocity is anti-derivative/integral of acceleration

[tex]\int{(2sin(t)+1)} \, dt[/tex] = -2cos(t)+t+C

v(0) = 0

0 = -2cos(0)+0+C = -2 +C; C = 2

v(t) = -2cos(t)+t+2

position is anti-derivative of velocity

[tex]\int{(-2cos(t)+t+2)} \, dt[/tex] = [tex]-2sin(t)+\frac{t^2}{2} +2t + C[/tex]

s(0) = 3

3 = -2sin(0) + 0 + 0+ C

3 = C

s(t) = [tex]-2sin(t)+\frac{t^2}{2} +2t + 3[/tex]

average value of a function of a domain [a, b] is given by the equation

[tex]\frac{1}{b-a} \int\limits^b_a {f(x)} \, dx[/tex]

average of position from t = 2 to t = 5

[tex]\frac{1}{5-2} \int\limits^5_2 {(-2sin(t)+\frac{t^2}{2} +2t + 3)} \, dt[/tex]

[tex]\int\limits^5_2 {(-2sin(t)+\frac{t^2}{2} +2t + 3)} \, dt[/tex] = 2cos(5)+125/6+25+15 - 2cos(2) - 8/6 -4 + 6

=52.999 (use a calculator)

52.999/3 = 17.666

Answer:

v(t) = v(t) = -2cos(t) + t + 2

s(t) = -2sin(t) + ½t² + 2t + 3

Average value of s: 17.0 (3 sf)

Step-by-step explanation:

v(t) is the integral of a(t)

v(t) = -2cos(t) + t + c

t = 0, v = 0

0 = -2 + 0 + c

c = 2

v(t) = -2cos(t) + t + 2

Displacement/position is the integral of v(t)

s(t) = -2sin(t) + ½t² + 2t + c

t = 0, s = 3

3 = 0 + 0 + 0+ c

c = 3

s(t) = -2sin(t) + ½t² + 2t + 3

Integral of s:

2cos(t) + ⅙t³ + t² + 3t + c

Average value

= 1/(b - a) × integral

= 1/(5-2) × [ (2cos(5) + ⅙(5)³ + 5² + 3(5) + c) - (2cos(2) + ⅙(2)³ + 2² + 3(2) + c) ]

= ⅓[61.4006577 - 10.50103966]

= 16.96653935