A 71.0 kg football player is gliding across very smooth ice at 2.15 m/s . He throws a 0.470 kg football straight forward. Part A What is the player's speed afterward if the ball is thrown at 18.0 m/s relative to the ground?

Respuesta :

Answer:

The player's speed afterward ball is thrown at 18 [tex]\frac{m}{s}[/tex] relative to ground is 2.04 [tex]\frac{m}{s}[/tex]

Explanation:

Given:

Mass of football player [tex]m = 71[/tex] kg

Speed of player [tex]v = 2.15[/tex] [tex]\frac{m}{s}[/tex]

Mass of football [tex]m' = 0.470[/tex] kg

For finding the player's speed afterward the ball is thrown at 18 [tex]\frac{m}{s}[/tex] relative to the ground,

The initial momentum of football player and ball is,

   [tex]P_{i} = (m+m') v[/tex]

   [tex]P_{i} = (71 +0.470) 2.15[/tex]

   [tex]P_{i} = 153.66[/tex]  [tex]kg . \frac{m}{s}[/tex]

The final momentum of the system is,

  [tex]P_{f} = mv_{o} + m'v_{b}[/tex]

Here given in question [tex]v_{b} = 18 \frac{m}{s}[/tex]

  [tex]P_{f} = 71 v_{o} + 0.470 \times 18[/tex]

Using the conservation of momentum,

      [tex]P_{i} = P_{f}[/tex]

[tex]153.66 = 71 v_{o} + 0.470 \times 18[/tex]

   [tex]71v_{o} = 145.2[/tex]

  [tex]v_{o} = 2.04[/tex] [tex]\frac{m}{s}[/tex]

Therefore, the player's speed afterward ball is thrown at 18 [tex]\frac{m}{s}[/tex] relative to ground is 2.04 [tex]\frac{m}{s}[/tex]