4. The cycle time for trucks hauling concrete to a highway construction site is uniformly distributed over the interval 50 to 70 minutes. What is the probability that the cycle time exceeds 65 minutes?

Respuesta :

Answer:

The probability that the cycle time exceeds 65 minutes [tex]P(Y>65|Y>55)[/tex] is [tex]\frac{1}{3}[/tex].

[tex]P(Y>65|Y>55)=\frac{1}{3}[/tex].

Step-by-step explanation:

Given that the cycle time for trucks to uniformly distributed over the interval (50,70)

Let Y be the random variable for cycle time

To find P(Y>65|Y>55) :

We know that The density function is inversely proportional to the length of a interval for a uniform distribution ( and 0 elsewhere)

[tex]f(y)=\left\{\begin{array}{l}\frac{1}{70-50}=\frac{1}{20},50<y<70\\ 0, elsewhere\end{array}\right.[/tex]

The formula for Conditional probability is

[tex]P(A|B)=\frac{P(A\bigcap B)}{P(B)}[/tex]

Now we have that [tex]P(Y>65|Y>55)=\frac{P(Y>65\bigcap Y>55)}{P(Y>55)}[/tex]

Now we have to first find P(Y>65|Y>55) :

We have the common interval between interval Y>55 is (55,70) and Y>65 is (65,70)

∴ [tex]Y>55\bigcap Y>65=Y>65[/tex]

∴ [tex]P(Y>55\bigcap Y>65)=P(Y>65)[/tex]

[tex]=P(65<Y<70)[/tex]

∴ [tex]P(Y>55\bigcap Y>65)=P(65<Y<70)[/tex]

The formula [tex]P(a<Y<b)=\int\limits_a^b f(y)dy[/tex]

So we can write as [tex]P(65<Y<70)=\int\limits_{65}^{70} f(y)dy[/tex]

Since [tex]f(y)=\frac{1}{20}[/tex]  [tex]\forall[/tex]  y∈(50,70)

[tex]P(65<Y<70)=\int\limits_{65}^{70} (\frac{1}{20})dy[/tex]

[tex]=\frac{1}{20}y]\limits_{65}^{70}[/tex]

[tex]=\frac{1}{20}(70-65)[/tex]

[tex]=\frac{1}{20}(5)[/tex]

[tex]=0.25[/tex]

[tex]P(65<Y<70)=0.25[/tex]

Similarly we find P(Y>55)=P(55<Y<70)

[tex]P(55<Y<70)=\int\limits_{55}^{70} (\frac{1}{20})dy[/tex]

[tex]=\frac{1}{20}y]\limits_{55}^{70}[/tex]

[tex]=\frac{1}{20}(70-55)[/tex]

[tex]=\frac{1}{20}(25)[/tex]

[tex]=0.75[/tex]

[tex]P(55<Y<70)=0.75[/tex]

[tex]P(Y>65|Y>55)=\frac{Y>55\bigcap Y>65}{P(Y>55)}[/tex]

[tex]=\frac{0.25}{0.75}[/tex] ( substituting the values)

[tex]=\frac{1}{3}[/tex]

[tex]P(Y>65|Y>55)=\frac{1}{3}[/tex].

The probability that the cycle time exceeds 65 minutes [tex]P(Y>65|Y>55)[/tex] is [tex]\frac{1}{3}[/tex].