Evaluate the function [tex]h(x) = x^4 - 3 x^2 + 3[/tex] at the given values of the independent variable and simplify.
a. h(-3)
b. h(-1)
c. h(-x)
d. h(3a)

Respuesta :

Answer:

a. 57

b. 1

c. [tex]h(-x) = x^4 -3x^2 + 3[/tex]

d. [tex]h(3a) = 81a^4 -27a^2 + 3[/tex]

Step-by-step explanation:

The independent variable in the function is [tex]x[/tex].

a. When [tex]x = -3[/tex]:

[tex]h(-3) = (-3)^4 - 3(-3)^2 +3\\\\\\h(-3) = 81 -3(9) + 3\\\\\\h(-3) = 81-27+3\\\\\\h(-3) = 57[/tex]

b. When [tex]x = -1:[/tex]

[tex]h(-1) = (-1)^4 - 3(-1)^2 + 3\\\\\\h(-1) = 1 -3 + 3\\\\\\h(-1) = 1[/tex]

c. When [tex]x = -x[/tex]:

[tex]h(-x) = (-x)^4 - 3(-x)^2 + 3\\\\\\\h(-x) = x^4 -3x^2 + 3[/tex]

d. When [tex]x = 3a[/tex]:

[tex]h(3a) = (3a)^4 - 3(3a)^2 + 3\\\\\\h(3a) = 81a^4 - 3(9a^2) + 3\\\\\\h(3a) = 81a^4 -27a^2 + 3[/tex]