Answer:
a. 57
b. 1
c. [tex]h(-x) = x^4 -3x^2 + 3[/tex]
d. [tex]h(3a) = 81a^4 -27a^2 + 3[/tex]
Step-by-step explanation:
The independent variable in the function is [tex]x[/tex].
a. When [tex]x = -3[/tex]:
[tex]h(-3) = (-3)^4 - 3(-3)^2 +3\\\\\\h(-3) = 81 -3(9) + 3\\\\\\h(-3) = 81-27+3\\\\\\h(-3) = 57[/tex]
b. When [tex]x = -1:[/tex]
[tex]h(-1) = (-1)^4 - 3(-1)^2 + 3\\\\\\h(-1) = 1 -3 + 3\\\\\\h(-1) = 1[/tex]
c. When [tex]x = -x[/tex]:
[tex]h(-x) = (-x)^4 - 3(-x)^2 + 3\\\\\\\h(-x) = x^4 -3x^2 + 3[/tex]
d. When [tex]x = 3a[/tex]:
[tex]h(3a) = (3a)^4 - 3(3a)^2 + 3\\\\\\h(3a) = 81a^4 - 3(9a^2) + 3\\\\\\h(3a) = 81a^4 -27a^2 + 3[/tex]