Water runs into a conical tank at the rate of 9 ft 3/min. the tank is standing, inverted, and has a height of 10 feet and a base diameter of 10 feet. At what rate is the radius of the water in the tank increasing when the radius is two feet

Respuesta :

Answer:

0.36ft/min

Step-by-step explanation:

We are given that

[tex]\frac{dv}{dt}=9ft^3/min[/tex]

Diameter of  tank,d=10ft

Radius,[tex]r=\frac{d}{2}=\frac{10}{2}=5ft[/tex]

Height of tank,h=10 ft

We have to find the rate at which radius of the water in the tank increasing when r=2 ft

[tex]\frac{h}{r}=\frac{10}{5}=2[/tex]

[tex]h=2r[/tex]

Volume of conical tank=[tex]V=\frac{1}{3}\pi r^2 h[/tex]

Substitute the values

[tex]V=\frac{1}{3}\pi r^2(2r)=\frac{2}{3}\pi r^3[/tex]

Differentiate w.r.t t

[tex]\frac{dV}{dt}=2\pi r^2\frac{dr}{dt}[/tex]

Substitute the values

[tex]9=2\pi(2)^2\frac{dr}{dt}[/tex]

[tex]\frac{dr}{dt}=\frac{9}{2\pi(2)^2}=\frac{9}{8\pi}=0.36ft/min[/tex]