Find parametric equations for the following curve. Include an interval for the parameter values. A circle centered at (−4,4) with radius 11​, generated counterclockwise counterclockwise.

Respuesta :

Answer:

[tex]x(t)=-4+11cos t[/tex]

[tex]y(t)=4+11sin t[/tex]

Interval:[0,[tex]2\pi[/tex]]

Step-by-step explanation:

We are given that

Center of circle=(-4,4)

Radius,r=11 units

We have to find the parametric equations of the given curve.

[tex]x(t)=x_1+rcost[/tex]

[tex]y(t)=y_1+rsint[/tex]

Where [tex](x_1,y_1)=[/tex]Center of circle

Using the formula

[tex]x(t)=-4+11cos t[/tex]

[tex]y(t)=4+11sin t[/tex]

Where [tex]0\leq t\leq 2\pi[/tex]

This is required parametric equation of given curve.