Answer:
[tex]2351\text{ pounds}[/tex]
Step-by-step explanation:
GIVEN: Suppose that the weight (in pounds) of an airplane is a linear function of the amount of fuel (in gallons) in its tank. When carrying [tex]12[/tex] gallons of fuel, the airplane weighs [tex]2078[/tex] pounds. When carrying [tex]40[/tex] gallons of fuel, it weighs [tex]2260[/tex] pounds.
TO FIND: How much does the airplane weigh if it is carrying [tex]54[/tex] gallons of fuel.
SOLUTION:
Let the fuel be represented along [tex]\text{x-axis}[/tex] and weight of plane along [tex]\text{y-axis}[/tex]
two coordinates are [tex](12,2078)\text{ and }(40,2260)[/tex]
now, equation of linear function is
[tex]\text{y}-\text{y}_1=\frac{\text{y}_2-\text{y}_1}{\text{x}_2-\text{x}_1}(\text{x}-\text{x}_1)[/tex]
putting values we get
[tex]\text{y}-2078=\frac{182}{28}(\text{x}-12)[/tex]
[tex]2\text{y}=13\text{x}+4000[/tex]
Now when fuel is [tex]54\text{ gallons}[/tex]
[tex]2\text{y}=13\times54+4000[/tex]
[tex]\text{y}=2351\text{ pounds}[/tex]
Airplane weighs [tex]2351\text{ pounds}[/tex]