Respuesta :
Answer:
[tex]\displaystyle \frac{dy}{dx} = \frac{66}{x}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = 66 \ln x + 135[/tex]
Step 2: Differentiate
- Derivative Property [Addition/Subtraction]: [tex]\displaystyle y' = \frac{d}{dx}[66 \ln x] + \frac{d}{dx}[135][/tex]
- Derivative Property [Multiplied Constant]: [tex]\displaystyle y' = 66\frac{d}{dx}[\ln x] + \frac{d}{dx}[135][/tex]
- Logarithmic Differentiation: [tex]\displaystyle y' = \frac{66}{x}[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation