Rewrite the expression in the form 4^n4 n 4, start superscript, n, end superscript. (4^{6})(4^{-8})=(4 6 )(4 −8 )=(, 4, start superscript, 6, end superscript, ), (, 4, start superscript, minus, 8, end superscript, ), equals

Respuesta :

Answer:

[tex]4^{-2}[/tex]

Step-by-step explanation:

Given the expression:  [tex](4^{6})(4^{-8})[/tex]

The two terms have the same base 4. Therefore, we can apply the addition law of indices to simplify.

Addition Law of Indices: [tex]a^x \cdot a^y=a^{x+y}[/tex]

Therefore:

[tex](4^{6})(4^{-8})\\=4^{6+(-8)}\\=4^{6-8}\\=4^{-2}[/tex]

Therefore:

[tex](4^{6})(4^{-8})=4^{-2}[/tex] in the form [tex]4^n[/tex]

The equivalent expression of [tex](4^{6})(4^{-8})[/tex] is [tex]4^{- 2}[/tex]

How to rewrite the expression

The expression is given as:

[tex](4^{6})(4^{-8})[/tex]

Rewrite the expression as follows:

[tex]4^{6} * 4^{-8}[/tex]

Apply the product law of indices

[tex]4^{6 - 8}[/tex]

Evaluate the difference

[tex]4^{- 2}[/tex]

Hence, the equivalent expression of [tex](4^{6})(4^{-8})[/tex] is [tex]4^{- 2}[/tex]

Read more about equivalent expression at:

https://brainly.com/question/2972832