It is said that happy and healthy workers are efficient and productive. A company that manufactures exercising machines wanted to know the percentage of large companies that provide on-site health club facilities. A sample of 240 such companies showed that 96 of them provide such facilities. Construct a 97% confidence interval for the percentage of all such companies that provide such facilities on-site. What is the margin of error for this estimate

Respuesta :

Answer:

The 97% confidence interval for the percentage of all such companies that provide such facilities on-site is (0.3314, 0.4686). The margin of error is of 0.0686 = 6.86 percentage points.

Step-by-step explanation:

In a sample with a number n of people surveyed with a probability of a success of [tex]\pi[/tex], and a confidence level of [tex]1-\alpha[/tex], we have the following confidence interval of proportions.

[tex]\pi \pm z\sqrt{\frac{\pi(1-\pi)}{n}}[/tex]

In which

z is the zscore that has a pvalue of [tex]1 - \frac{\alpha}{2}[/tex].

The margin of error is:

The absolute value of the subtraction of one of the bounds by the estimate [tex]\pi[/tex]

For this problem, we have that:

[tex]n = 240, \pi = \frac{96}{240} = 0.4[/tex]

97% confidence level

So [tex]\alpha = 0.03[/tex], z is the value of Z that has a pvalue of [tex]1 - \frac{0.03}{2} = 0.985[/tex], so [tex]Z = 2.17[/tex].

The lower limit of this interval is:

[tex]\pi - z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.4 - 2.17\sqrt{\frac{0.4*0.6}{240}} = 0.3314[/tex]

The upper limit of this interval is:

[tex]\pi + z\sqrt{\frac{\pi(1-\pi)}{n}} = 0.4 + 2.17\sqrt{\frac{0.4*0.6}{240}} = 0.4686[/tex]

0.4686 - 0.4 = 0.0686

The 97% confidence interval for the percentage of all such companies that provide such facilities on-site is (0.3314, 0.4686). The margin of error is of 0.0686 = 6.86 percentage points.