[tex]g(x) = 3x - 6[/tex]and
[tex] {g}^{ - 1}(x) = \frac{x + 6}{3} [/tex]. With g(x) and
[tex] {g}^{ - 1}(x)[/tex], find
[tex] {g}^{ - 1}(g(10))[/tex]. Make sure to show your work.​

Respuesta :

leena

Hey there! :)

Answer:

[tex]g^{-1} (g(10))=10[/tex]

Step-by-step explanation:

Begin by calculating g(10):

g(x) = 3x - 6

Substitute in 10 for x:

g(10) = 3(10) - 6

g(10) = 30-6

g(10) = 24.

Plug '24' into 'x' into [tex]g^{-1} (x)[/tex]

[tex]g^{-1} (24)=\frac{(24) + 6}{3}[/tex]

Simplify:

[tex]g^{-1} (24)=\frac{30}{3}[/tex]

[tex]g^{-1} (24)=10[/tex]