Consider a wire of a circular cross-section with a radius of R = 3.17 mm. The magnitude of the current density is modeled as J = cr2 = 9.00 ✕ 106 A/m4 r2. What is the current (in A) through the inner section of the wire from the center to r = 0.5R?

Respuesta :

Answer:

The current is  [tex]I = 8.9 *10^{-5} \ A[/tex]

Explanation:

From the question we are told that

     The  radius is [tex]r = 3.17 \ mm = 3.17 *10^{-3} \ m[/tex]

      The current density is  [tex]J = c\cdot r^2 = 9.00*10^{6} \ A/m^4 \cdot r^2[/tex]

      The distance we are considering is  [tex]r = 0.5 R = 0.001585[/tex]

Generally current density is mathematically represented as

          [tex]J = \frac{I}{A }[/tex]

Where A is the cross-sectional area represented as

         [tex]A = \pi r^2[/tex]

=>      [tex]J = \frac{I}{\pi r^2 }[/tex]

=>    [tex]I = J * (\pi r^2 )[/tex]

Now the change in current per unit length is mathematically evaluated as

        [tex]dI = 2 J * \pi r dr[/tex]

Now to obtain the current (in A) through the inner section of the wire from the center to r = 0.5R we integrate dI from the 0 (center) to point 0.5R as follows

         [tex]I = 2\pi \int\limits^{0.5 R}_{0} {( 9.0*10^6A/m^4) * r^2 * r} \, dr[/tex]

         [tex]I = 2\pi * 9.0*10^{6} \int\limits^{0.001585}_{0} {r^3} \, dr[/tex]

        [tex]I = 2\pi *(9.0*10^{6}) [\frac{r^4}{4} ] | \left 0.001585} \atop 0}} \right.[/tex]

        [tex]I = 2\pi *(9.0*10^{6}) [ \frac{0.001585^4}{4} ][/tex]

substituting values

        [tex]I = 2 * 3.142 * 9.00 *10^6 * [ \frac{0.001585^4}{4} ][/tex]

        [tex]I = 8.9 *10^{-5} \ A[/tex]