A number is chosen at random from the set of consecutive natural numbers $\{1, 2, 3, \ldots, 24\}$. What is the probability that the number chosen is a factor of $4!$? Express your answer as a common fraction.

Respuesta :

Answer:

[tex]Probability = \frac{1}{3}[/tex]

Step-by-step explanation:

Given

[tex]Set:\ \{1, 2, 3, \ldots, 24\}[/tex]

[tex]n(Set) = 24[/tex]

Required

Determine the probability of selecting a factor of 4!

First, we have to calculate 4!

[tex]4! = 4 * 3 * 2 * 1[/tex]

[tex]4! = 24[/tex]

Then, we list set of all factors of 24

[tex]Factors:\ \{1, 2, 3, 4, 6, 8, 12, 24\}[/tex]

[tex]n(Factors) = 8[/tex]

The probability of selecting a factor if 24 is calculated as:

[tex]Probability = \frac{n(Factor)}{n(Set)}[/tex]

Substitute values for n(Set) and n(Factors)

[tex]Probability = \frac{8}{24}[/tex]

Simplify to lowest term

[tex]Probability = \frac{1}{3}[/tex]