ASAP PLEASE GIVE CORRECT ANSWER
In a rectangular coordinate system, what is the number of units in the distance from the origin to the point $(-15, 8)$? Enter your answer

Respuesta :

distance of a point [tex](x,y)[/tex] from origin is $\sqrt{x^2+y^2}$

so distance is $\sqrt{(-15)^2+(8)^2}=\sqrt{225+64}=\sqrt{289}=17$

Answer:

Distance=17 units

Step-by-step explanation:

Coordinates of the origin: (0, 0)

Coordinates of the point in question: (-15, 8)

Distance formula for any two points [tex](x_1,y_1), (x_2,y_2)[/tex] on the plane:

[tex]distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\distance=\sqrt{(-15-0)^2+(8-0)^2}\\distance=\sqrt{(15)^2+(8)^2}\\distance=\sqrt{225+64} \\distance=\sqrt{289} \\distance=17[/tex]