Answer:
Use Rule of One: {x}^{1}=xx
1
=x.
\frac{x}{4}x+4=3
4
x
x+4=3
2 Use this rule: \frac{a}{b} \times c=\frac{ac}{b}
b
a
×c=
b
ac
.
\frac{xx}{4}+4=3
4
xx
+4=3
3 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
.
\frac{{x}^{2}}{4}+4=3
4
x
2
+4=3
4 Subtract 44 from both sides.
\frac{{x}^{2}}{4}=3-4
4
x
2
=3−4
5 Simplify 3-43−4 to -1−1.
\frac{{x}^{2}}{4}=-1
4
x
2
=−1
6 Multiply both sides by 44.
{x}^{2}=-1\times 4x
2
=−1×4
7 Simplify 1\times 41×4 to 44.
{x}^{2}=-4x
2
=−4
8 Take the square root of both sides.
x=\pm \sqrt{-4}x=±√
−4
9 Simplify \sqrt{-4}√
−4
to \sqrt{4}\imath√
4
ı.
x=\pm \sqrt{4}\imathx=±√
4
ı
10 Since 2\times 2=42×2=4, the square root of 44 is 22.
x=\pm 2\imathx=±2ı
Explanation:
Answer:
x= −4
Explanation:
1 /4
x+4=3
Step 1: Subtract 4 from both sides.
1 /4 x+4−4=3−4
1 /4 x= −1
Step 2: Multiply both sides by 4.
4*( 1/ 4 x)=(4)*(−1)
x=−4