Answer:
z1/z2
Explanation:
we have no quantum effects therefore we can make use of Maxwell Boltzmann distribution in the description of this system.
using the boltzman distribution the probability of finding a particle in energy state
[tex]P_{ei} = \frac{gie^{-ei/kol} }{z}[/tex]
we have
gi to be degeneration of the ith state
ei to be energy of ith state
[tex]z=e^{-ei/kbt}[/tex] summation
[tex]P_{ope} = \frac{e^{-ei/kBt} }{z} = \frac{Z_{1} }{Z}[/tex]
We have R to be equal to
[tex]\frac{P_{ope} }{P_{Close} } = \frac{Z1}{Z2}[/tex]