Respuesta :

Answer:

5.7 units

Step-by-step explanation:

The distance from point P to QS is the distance from point P (1, 1) to the point of interception R(-3, 5).

Use distance formula to calculate distance between P and R:

[tex] PR = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

Let,

[tex] P (1, 1) = (x_1, y_1) [/tex]

[tex] R(-3, 5) = (x_2, y_2) [/tex]

Plug in the values into the formula.

[tex] PR = \sqrt{(-3 - 1)^2 + (5 - 1)^2} [/tex]

[tex] PR = \sqrt{(-4)^2 + (4)^2} [/tex]

[tex] PR = \sqrt{16 + 16} [/tex]

[tex] PR = \sqrt{32} [/tex]

[tex] PR = 5.7 units [/tex] (to nearest tenth)