1. Find the distance from point P to QS
SHOW ALL OF YOUR WORK
S(0,8)
R(-3,5)
Q(-5,3)
P(1, 1)

Answer:
5.7 units
Step-by-step explanation:
The distance from point P to QS is the distance from point P (1, 1) to the point of interception R(-3, 5).
Use distance formula to calculate distance between P and R:
[tex] PR = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]
Let,
[tex] P (1, 1) = (x_1, y_1) [/tex]
[tex] R(-3, 5) = (x_2, y_2) [/tex]
Plug in the values into the formula.
[tex] PR = \sqrt{(-3 - 1)^2 + (5 - 1)^2} [/tex]
[tex] PR = \sqrt{(-4)^2 + (4)^2} [/tex]
[tex] PR = \sqrt{16 + 16} [/tex]
[tex] PR = \sqrt{32} [/tex]
[tex] PR = 5.7 units [/tex] (to nearest tenth)