Respuesta :

log₃(-2 tan(x)) = 1/2

Write both sides as powers of 3, and use the property [tex]b^{\log_ba}=a[/tex]:

[tex]3^{\log_3(-2\tan x)}=3^{\frac12}[/tex]

-2 tan(x) = √3

Then solve for x :

tan(x) = -√3 / 2

x = arctan(-√3 / 2) +

x = -arctan(√3 / 2) +

where n is any integer.