Respuesta :
The equivalent expression of the expression[tex]\sqrt[4]{\frac{16x^{11}y^8}{81x^7y^6}}[/tex] is [tex]\frac 23x\sqrt{y[/tex]
How to determine the equivalent expression?
The expression is given as:
[tex]\sqrt[4]{\frac{16x^{11}y^8}{81x^7y^6}}[/tex]
Take the 4th root of 16 and 81
[tex]\frac 23\sqrt[4]{\frac{x^{11}y^8}{x^7y^6}}[/tex]
Apply the law of indices
[tex]\frac 23\sqrt[4]{x^{11 - 7}y^{8 - 6}}[/tex]
Evaluate the difference
[tex]\frac 23\sqrt[4]{x^{4}y^{2}}[/tex]
Take the 4th root of x^4
[tex]\frac 23x\sqrt[4]{y^{2}}[/tex]
Take the 4th root of y^2
[tex]\frac 23x\sqrt{y[/tex]
Hence, the equivalent expression of [tex]\sqrt[4]{\frac{16x^{11}y^8}{81x^7y^6}}[/tex] is [tex]\frac 23x\sqrt{y[/tex]
Read more about equivalent expression at:
https://brainly.com/question/2972832
#SPJ2