Respuesta :

Answer:

[tex]X=\begin{bmatrix}17 &3 \\-24 &-12 \\3 &-16 \end{bmatrix}[/tex]

Step-by-step explanation:

Matrix Equations

Given:

[tex]A=\begin{bmatrix}-7 &-2 \\9 &7 \\2 &4 \end{bmatrix}[/tex]

[tex]B=\begin{bmatrix}-4 &-3 \\3 &9 \\9 &-4 \end{bmatrix}[/tex]

Find X such that:

B - X = 3A

Subtracting B:

- X = 3A - B

Multiplying by -1:

X = -3A + B

Find -3A:

[tex]-3A=-3\begin{bmatrix}-7 &-2 \\9 &7 \\2 &4 \end{bmatrix}=\begin{bmatrix}21 &6 \\-27 &-21 \\-6 &-12 \end{bmatrix}[/tex]

Add to B:

[tex]X=-3A+B=\begin{bmatrix}21 &6 \\-27 &-21 \\-6 &-12 \end{bmatrix}+\begin{bmatrix}-4 &-3 \\3 &9 \\9 &-4 \end{bmatrix}=\begin{bmatrix}17 &3 \\-24 &-12 \\3 &-16 \end{bmatrix}[/tex]

Thus:

[tex]X=\begin{bmatrix}17 &3 \\-24 &-12 \\3 &-16 \end{bmatrix}[/tex]