Respuesta :

Answer:

[tex]x=8[/tex]

[tex]\m\angle HFG= 80^\circ[/tex]

Step-by-step explanation:

Given that:

Point [tex]H[/tex] is interior of [tex]\angle EFG[/tex].

[tex]m\angle EFH = 75^\circ\\m\angle HFG = (10x)^\circ\\m\angle EFG = (20x-5)^\circ[/tex]

To find:

[tex]x = ?\\m\angle HFG = ?[/tex]

Solution:

First of all, let us represent the given values in the form of a diagram.

Kindly refer to the attached image for the given points and values of angles.

We can clearly see that:

[tex]m\angle EFG = m\angle EFH + m\angle HFG[/tex]

Putting all the values given in above equation, we get:

[tex](20x-5)^\circ = 75^\circ + 10x^\circ\\\Rightarrow 20x-10x=75+5\\\Rightarrow 10x =80\\\Rightarrow \bold{x =8}[/tex]

[tex]m\angle HFG =10x^\circ\\\Rightarrow m\angle HFG =10\times 8^\circ\\\Rightarrow m\angle HFG = \bold{80^\circ}[/tex]

Ver imagen isyllus