Respuesta :

Given:

Consider the completer question is "If ∆BTS≅∆GHD, BS=25, TS=14, BT=31, GD=4x-11, m∠S=56, m∠B=21 and m∠H=(7y+5), find the values of x and y.

To find:

The values of x and y.

Solution:

We have,

[tex]\Delta BTS\cong \Delta GHD[/tex]       (Given)

[tex]BS=GD[/tex]                       (CPCTC)

[tex]25=4x-11[/tex]

[tex]25+11=4x[/tex]

[tex]36=4x[/tex]

Divide both sides by 4.

[tex]9=x[/tex]

In ∆BTS,

[tex]\angle B+\angle T+\angle S=180^\circ[/tex]    (Angle sum property)

[tex]21^\circ+\angle T+56^\circ=180^\circ[/tex]

[tex]77^\circ+\angle T=180^\circ[/tex]

[tex]\angle T=180^\circ-77^\circ[/tex]

[tex]\angle T=103^\circ[/tex]

Now,

[tex]\angle T=\angle H[/tex]            (CPCTC)

[tex]103=7y+5[/tex]

[tex]103-5=7y[/tex]

[tex]98=7y[/tex]

Divide both sides by 7.

[tex]14=y[/tex]

Therefore, the value of x is 9 and value of y is 14.