hiruy55
contestada

4. As shown in Figure 5.111 to the right if the
two small semicircles, each of radius 1 unit
with centres O' and O'' are contained in the
bigger semi-circle with center O, So that
O', O and O" are on the same line, then
what is the area of the shaded part?

4 As shown in Figure 5111 to the right if thetwo small semicircles each of radius 1 unitwith centres O and O are contained in thebigger semicircle with center O class=

Respuesta :

Answer:

Area of the shaded part is 3.14 square unit.

Step-by-step explanation:

Area of the shaded part = Area of large semicircle - (Area of two small semi circles)

Area of large semicircle with center O = [tex]\frac{1}{2}(\pi r^2)[/tex]

                                                                = [tex]\frac{1}{2}\pi (2)^{2}[/tex]

                                                                = 2π

Area of semicircle with center O' = [tex]\frac{1}{2}\pi (1)^2[/tex]

                                                      = [tex]\frac{\pi }{2}[/tex]

Area of semicircle with center O" = [tex]\frac{\pi }{2}[/tex]

Now substitute these values in the formula,

Area of shaded part = [tex]2\pi - (\frac{\pi }{2}+\frac{\pi }{2})[/tex]

                                  = [tex]\pi[/tex]

                                  = 3.14 square unit

Area of the shaded part is 3.14 square unit.