Answer:
Following are the solution to this question:
Step-by-step explanation:
please find the graph image in the attached file.
Given value:
[tex]AB= c= 1744 \ miles\\\\BC= a= 2451 \ miles\\\\AB= s= 714 \ miles[/tex]
using the law of cosines:
[tex]\cos A = \frac{s^2+c^2-a^2}{2bc}\\\\[/tex]
[tex]=\frac{714^2+1744^2-2451^2}{2 \times 714 \times 1744}\\\\= -0.9862[/tex]
[tex]A=cos^{-1} (-0.9862)\\\\A= 170.47^{\circ}[/tex]
[tex]\cos B = \frac{a^2+c^2-b^2}{2ac}\\\\=\frac{2451^2+1744^2-714^2}{2 \times 2451 \times 1744}\\\\= 0.9988\\\\B=cos^{-1} (0.9988)\\\\B= 2.7641^{\circ}\\\\[/tex]
[tex]\cos C = \frac{a^2+c^2-b^2}{2ac}\\\\=\frac{2451^2+1744^2-714^2}{2 \times 2451 \times 1744}\\\\= 0.9988\\\\C=cos^{-1} (0.9988)\\\\C= 2.7641^{\circ}[/tex]