Aron flips a penny 9 times. Which expression represents the probability of getting exactly 3 heads? P (k successes) = Subscript n Baseline C Subscript k Baseline p Superscript k Baseline (1 minus p) Superscript n minus k. Subscript n Baseline C Subscript k Baseline = StartFraction n factorial Over (n minus k) factorial times k factorial EndFraction Subscript 9 Baseline C Subscript 3 Baseline (0.5) cubed (0.5) Superscript 6 Subscript 9 Baseline C Subscript 3 Baseline (0.5) cubed Subscript 9 Baseline C Subscript 3 Baseline (0.5) cubed (0.5) Superscript 9 Subscript 9 Baseline C Subscript 6 Baseline (0.5) Superscript 6

Respuesta :

Answer:

[tex]P(3) = ^9C_3 * 0.5^3 *0.5^6[/tex]

Step-by-step explanation:

Given

[tex]n = 9[/tex] --- number of flips

Required

[tex]P(x = 3)[/tex]

The probability of getting a head is:

[tex]p = \frac{1}{2}[/tex]

[tex]p = 0.5[/tex]

The distribution follows binomial probability, and it is calculated using:

[tex]P(x) = ^nC_x * p^x * (1 - p)^{n-x}[/tex]

So, we have:

[tex]P(3) = ^9C_3 * 0.5^3 * (1 - 0.5)^{9-3}[/tex]

[tex]P(3) = ^9C_3 * 0.5^3 *0.5^6[/tex]

c is the right answer

Ver imagen sdestinyheath