Respuesta :

It is  false that the value 5pi/4 is a solution for the given equation.

How to solve equation with trigonometry ratio ?

1. Collect the like terms

2. make the trigonometry ratio the subject of formula

3. Find the inverse of the trigonometry.

Given that a solution for the equation 3[tex]\sqrt{2}[/tex] sinФ + 2 = -1.

Collect the like terms

3[tex]\sqrt{2}[/tex]  Sin Ф = -1 - 2

3[tex]\sqrt{2}[/tex]  SinФ = -3

Sin Ф = -3 / 3[tex]\sqrt{2}[/tex]

SinФ = -1/[tex]\sqrt{2}[/tex]

Rationalize the RHS

SinФ = -1/[tex]\sqrt{2}[/tex]  x [tex]\sqrt{2}[/tex] /[tex]\sqrt{2}[/tex]

Sin Ф = -[tex]\sqrt{2}[/tex] /2

Sin Ф = - 0.707

Ф = [tex]Sin^{-1}[/tex](-0.707)

Ф = 45°

Change the degree to radian

45 x [tex]\pi[/tex]/180

[tex]\pi[/tex]/4

Therefore, it is false that the value 5pi/4 is a solution for the given equation.

Learn more about trigonometry here: https://brainly.com/question/24349828

#SPJ1

Answer:

It's True

Step-by-step explanation:

I just took the quiz and the answer is true.