Two angles of a quadrilateral measure 215° and 70°. The other two angles are in a ratio of 2:13. What are the measures of those two angles?

Respuesta :

MiReU

The sum of the interior angles of a quadrilateral is 360°.

The ratio of 2 angles is 2 : 13. Take them as 2x° & 13x°.

Now, solve for x.

[tex]\mathfrak{215+70+2x+13x=360} [/tex]

[tex]\mathfrak{285+15x=360} [/tex]

[tex]\mathfrak{15x=360-285} [/tex]

[tex]\mathfrak{15x=75} [/tex]

[tex]\mathfrak{x=\dfrac{75}{15}} [/tex]

[tex]\underline{\mathfrak{x=5}} [/tex]

So,

2x = 2(5) = [tex]\boxed{\mathfrak{10^{\circ}}} [/tex]

13x = 13(5) = [tex]\boxed{\mathfrak{65^{\circ}}} [/tex]

[tex]\mathbb{MIREU} [/tex]