Given that cosθ= 5/13 and that θ lies in Quadrant IV, what is the exact value of sin 2θ? Answers: [tex]\frac{120}{169}[/tex] [tex]\frac{24}{13}[/tex] - [tex]\frac{24}{13}[/tex] - [tex]\frac{120}{169}[/tex]

Respuesta :

Answer:

[tex]-\frac{120}{169}[/tex]

Step-by-step explanation:

Given

[tex]cos\theta=\frac{5}{13},-\frac{3\pi}{2}<\theta<2\pi\\sin(2\theta)=?[/tex]

Use identities

[tex]sin(2\theta)=2sin\theta cos\theta\\\\sin(2\theta)=2(-\frac{12}{13})(\frac{5}{13})\\ \\sin(2\theta)=2(-\frac{60}{169})\\ \\sin(2\theta)=-\frac{120}{169}[/tex]